首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   57篇
  国内免费   46篇
测绘学   26篇
大气科学   131篇
地球物理   186篇
地质学   179篇
海洋学   66篇
天文学   106篇
综合类   1篇
自然地理   94篇
  2023年   3篇
  2022年   6篇
  2021年   27篇
  2020年   32篇
  2019年   22篇
  2018年   22篇
  2017年   26篇
  2016年   34篇
  2015年   33篇
  2014年   35篇
  2013年   48篇
  2012年   28篇
  2011年   47篇
  2010年   43篇
  2009年   46篇
  2008年   43篇
  2007年   41篇
  2006年   43篇
  2005年   31篇
  2004年   32篇
  2003年   20篇
  2002年   21篇
  2001年   15篇
  2000年   16篇
  1999年   7篇
  1998年   9篇
  1997年   7篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1987年   1篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有789条查询结果,搜索用时 93 毫秒
781.
Tsunami evacuation planning in coastal communities is typically focused on local events where at-risk individuals must move on foot in a matter of minutes to safety. Less attention has been placed on distant tsunamis, where evacuations unfold over several hours, are often dominated by vehicle use and are managed by public safety officials. Traditional traffic simulation models focus on estimating clearance times but often overlook the influence of varying population demand, alternative modes, background traffic, shadow evacuation, and traffic management alternatives. These factors are especially important for island communities with limited egress options to safety. We use the coastal community of Balboa Island, California (USA), as a case study to explore the range of potential clearance times prior to wave arrival for a distant tsunami scenario. We use a first-in–first-out queuing simulation environment to estimate variations in clearance times, given varying assumptions of the evacuating population (demand) and the road network over which they evacuate (supply). Results suggest clearance times are less than wave arrival times for a distant tsunami, except when we assume maximum vehicle usage for residents, employees, and tourists for a weekend scenario. A two-lane bridge to the mainland was the primary traffic bottleneck, thereby minimizing the effect of departure times, shadow evacuations, background traffic, boat-based evacuations, and traffic light timing on overall community clearance time. Reducing vehicular demand generally reduced clearance time, whereas improvements to road capacity had mixed results. Finally, failure to recognize non-residential employee and tourist populations in the vehicle demand substantially underestimated clearance time.  相似文献   
782.
783.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   
784.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
785.
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n  = 2,140, R 2 = .91, p  < .001. We investigated the precipitation‐type‐specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = ?0.11‰ × 100 m?1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south‐ and north‐easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of d excess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.  相似文献   
786.
Particulate organic matter (POM) transiting through rivers could be lost to overbank storage, stored in‐channel, added to by erosion or autochthonous production, or turned over to release greenhouse gases to the atmosphere (either while in the water column or while stored in the channel). In the UK, a net loss of POM across catchments has been recorded, and the aim here was to investigate the balances of processes acting on the POM. This study considered records of suspended sediment and POM flux in comparison to stream flow, velocity, stream power, and residence time for the River Trent (English Midlands, 8,231 km2). We show that for the lower two thirds (106 km) of the River Trent, 2% is lost to overbank storage; 10% is lost to the atmosphere in the water column; and 31% is turned over while in temporary storage. Permanent in‐channel storage is negligible, and for the lower course of the river, material stored in‐channel will have a residence time of the order of hundreds of days between the last flood hydrograph of one winter and the first winter storm of the next winter (usually in the same calendar year). When considered at the scale of the UK, 1% POM in transit would be lost to overbank sedimentation; 5% turned over in the water column, and 14% turned over while in temporary storage. In the upper third of the study river channel, there is insufficient stream power to transport sediment and so in‐channel storage or in‐channel turnover over to the atmosphere dominate. The in‐channel processes of the River Trent do not conform to that expected for river channels as the headwaters are not eroding or transporting sediment. Therefore, the source of sediment must be lower down the channel network.  相似文献   
787.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   
788.
Sediment in urban stormwater systems creates a significant maintenance burden, while a lack of coarse-grained bed sediment in streams limits their ecological value and geomorphic resilience. Gravel substrates, for example, provide benthic habitat yet are often scoured from the channel bed only to end up in a detention basin or treatment wetland. This dual problem of both ‘too much’ and ‘too little’ coarse-grained sediment reflects a watershed sediment budget that is profoundly altered. We developed a conceptual urban coarse-grained (>0.5 mm) sediment budget across three domains: hillslopes (urban land surfaces), the built stormwater network and stream channels. We then quantified key sources, sinks and storages for a suburban case study, using a combination of hillslope and in-channel monitoring, and interrogation of local government records. Around 36% of the sediment supplied to the stormwater network reached the catchment outlet, a level of sediment delivery much higher than observed in similar-sized natural catchments. The remainder was deposited in the sediment cascade and either stored, or extracted and removed from the catchment (e.g. material deposited in sediment ponds and gross pollutant traps). Conventional urban drainage networks are characterized by high hillslope sediment supply and low storage, resulting in efficient sediment delivery. Channel erosion, deposition in (and extraction from) pipes and channels, and floodplain deposition are small compared to sediment transport through the cascade. An understanding of the sediment budget of urban headwater catchments can provide stormwater and waterway managers with the information they need to address specific sediment problems such as sedimentation in stormwater assets and geomorphic recovery of urban streams. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
789.
Tim Church 《Geoarchaeology》2000,15(7):649-678
The obsidian in the gravels deposited by the Rio Grande in New Mexico has interested archaeologists of the region, particularly the use of these gravels by prehistoric populations and the implications for obsidian sourcing studies. Previous investigations of Rio Grande gravel obsidian have focused on obsidian in the archaeological record. This study focuses on the natural occurrence and distribution of obsidian in the gravels and the implications for archaeological investigations. Spatial sampling of the gravels clearly indicate that obsidian, as well as other chipped stone material, is not uniformly distributed across the landscape. Geochemical analysis of the obsidian in the gravels establishes the true source constituents for the obsidian present in the gravels. The main source area for obsidian in the Rio Grande gravels is the Jemez Mountains, although some obsidian comes from Grant's Ridge, Polvadera, and No Aqua sources. Sources south of Mount Taylor, such as Red Hill and Mule Creek, do not occur in the Rio Grande gravels of southern New Mexico. © 2000 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号